What we’ll do

  1. Install the Pica MCP Server.
  2. Connect your .
  3. Set up a starter project.
  4. Add some rules for the LLMs to understand BuildKit.
  5. Prompt the LLM to build your tool.

Install the Pica MCP Server

First, let’s add the Pica MCP Server to your development environment. Select your preferred tool and follow the instructions.

In the Cursor menu, select β€œMCP Settings” and update the MCP JSON file to include the following:
MCP Settings
{
  "mcpServers": {
    "pica": {
      "command": "npx",
      "args": ["@picahq/mcp"],
      "env": {
        "PICA_SECRET": "your-pica-secret-key"
      }
    }
  }
}
Replace your-pica-secret-key with your actual Pica Secret Key from the link below.

Grab your API Key

Navigate to your Pica dashboard to access your API keys.

Connect your accounts

Now we need to connect your so we can test our tool after we build it.

Required Environment Variables

You’ll need these connection keys in your environment:
Environment Setup
GMAIL_CONNECTION_KEY=your_gmail_connection_key
HUBSPOT_CONNECTION_KEY=your_hubspot_connection_key
SLACK_CONNECTION_KEY=your_slack_connection_key
OPENAI_API_KEY=your_openai_api_key
PICA_API_KEY=your_pica_api_key

Key Actions Used

This automation leverages 4 core actions across the three platforms:

Gmail: List User Messages

Fetches recent emails with the β€œLeads” label for processing

HubSpot: Create Contact

Creates new contact records for qualified leads with extracted information

HubSpot: Retrieve Contacts

Checks for existing contacts to prevent duplicates

Slack: Post Message

Sends formatted notifications to the sales team channel

Using the System

Once your system is set up, you can use this prompt to process lead inquiries:
Qualify today's lead inquiry emails from Gmail: for each email with the "Leads" label, extract sender details and qualify based on high intent signals (mentions budget over $5K, urgent timeline, specific product interest); if qualified with score >7/10, create a new contact in HubSpot with extracted information and lead source "Email Inquiry"; then send a Slack notification to #sales-leads channel with lead summary, qualification reasoning, and HubSpot contact link. Only process emails from the last 24 hours.

Qualification Criteria

The AI evaluates leads based on these factors:

Set up a starter project

Choose your preferred framework and follow the setup steps to get your starter project up and running.

  1. Clone and install dependencies.
Clone Repository
git clone https://github.com/picahq/buildkit-vercel-ai-starter.git && cd buildkit-vercel-ai-starter
Install Dependencies
npm install
  1. Set up environment variables.
.env.local (root directory)
OPENAI_API_KEY=your_openai_api_key_here
  1. Run the development server.
Start Server
npm run dev
  1. Open your browser.

    Navigate to http://localhost:3000 to see the chat interface.

Add some rules for the LLMs to understand BuildKit

BuildKit Rules for Cursor

Copy the rules content and paste them into .cursor/rules/buildkit.mdc in the root of your project.
BuildKit Rules for Cursor
---
description:
globs:
alwaysApply: true
---

# Pica Buildkit – LLM Rules

**Role**
You are an expert integration developer working with **Pica MCP**. You can:
- Build tools for **Vercel AI SDK** and **LangChain**
- Scaffold and implement **full MCP servers** (model context protocol)
- Use the **Pica MCP** utilities to discover actions, fetch schemas/knowledge, and execute API calls.

Pica is not in your training set; always follow the discovery steps below to build correctly.

---

## 0) Hard Requirements & Guardrails

1. **Do not overwrite existing projects**
   - Before generating/scaffolding, check the current directory.
   - If a project is detected (e.g., \`package.json\`, \`pnpm-lock.yaml\`/\`yarn.lock\`/\`package-lock.json\`, \`.git\`, \`mcp.json\`, \`src/\` with buildkit markers), **do not** create a new project. Instead, add or modify files minimally and explicitly.

2. **Always discover before coding**
   - Use Pica MCP tools to discover integrations and actions, and to fetch **action knowledge** (input schema, path, verbs, content-types, pagination, auth notes, rate limits) **before writing any tool code**.

3. **Prefer Pica MCP if available**
   - If the Pica MCP is available in the environment, use its tools to list integrations, fetch platform actions, and get action knowledge; only then implement.

4. **Use the provided executor**
   - When executing a Pica action from a tool or MCP, use \`picaToolExecutor\` (below).
   - Build its \`path\`, \`method\`, \`query\`/\`body\`, and \`contentType\` from **get_pica_action_knowledge**.

5. **Secrets**
   - Never print secrets. Expect \`PICA_API_KEY\` and user-provided \`{PLATFORM}_CONNECTION_KEY\` at runtime. Validate and fail fast if missing.

6. **Output discipline**
   - Generate **ready-to-run code** with minimal placeholders.
   - Provide install/run/test snippets when you scaffold.

7. **Connection key environment**
   - Remember to add the connection key to the environment and not as an argument to the tool. As PLATFORM_CONNECTION_KEY (i.e. GMAIL_CONNECTION_KEY)

8. **Type generation from action knowledge**
   - Remember to add types for what you need to based on the action knowledge.

---

## 1) Pica MCP Utilities (Call These First)

When asked to build a tool or MCP, follow this order:

1) **list_pica_integrations**
   _Goal_: Surface connectable platforms and their slugs/ids.
   _User help_: Tell the user how to add/authorize integrations at \`https://app.picaos.com/connections\`.

2) **get_pica_platform_actions(platformId | slug)**
   _Goal_: Find the action the user cares about (e.g., Gmail \`listMessages\`, Notion \`queryDatabase\`, Slack \`chat.postMessage\`).

3) **get_pica_action_knowledge(actionId)**
   _Goal_: Fetch the **canonical contract** for that action β€” HTTP method, path template, parameters (query, path, body), headers, content-type, limits, pagination rules, success/error shapes, and sample requests.

> Only after step (3) do you write code.

---

## 2) Pica Tool Executor (Boilerplate Example)

> **Note**: This is **boilerplate** β€” do **not** treat as final or language-specific. It simply shows how to call the Pica passthrough API. You may adapt it to any language or SDK as long as the call structure is preserved.

\`\`\`ts
export async function picaToolExecutor(
  path: string,
  actionId: string,
  connectionKey: string,
  options: {
    method?: string;
    queryParams?: URLSearchParams;
    body?: any;
    contentType?: string;
  } = {}
) {
  const { method = 'GET', queryParams, body, contentType } = options;

  const baseUrl = 'https://api.picaos.com/v1/passthrough';
  const url = queryParams
    ? \`\${baseUrl}\${path}?\${queryParams.toString()}\`
    : \`\${baseUrl}\${path}\`;

  // Default to JSON unless overridden by action knowledge
  const headers: Record<string, string> = {
    'content-type': contentType || 'application/json',
    'x-pica-secret': process.env.PICA_API_KEY || '',
    'x-pica-connection-key': connectionKey,
    'x-pica-action-id': actionId,
  };

  const fetchOptions: RequestInit = { method, headers };

  if (body && method !== 'GET') {
    fetchOptions.body = typeof body === 'string' ? body : JSON.stringify(body);
  }

  const response = await fetch(url, fetchOptions);
  if (!response.ok) {
    const text = await response.text().catch(() => '');
    throw new Error(\`Pica API call failed: \${response.status} \${response.statusText} :: \${text}\`);
  }
  return response.json().catch(() => ({}));
}
\`\`\`

**Key Points**
- Default \`content-type\` = \`application/json\` unless overridden by \`get_pica_action_knowledge\`.
- No Gmail-specific logic.
- Example only β€” adapt freely to your language/runtime.

---

## 3) Building Tools (Vercel AI SDK & LangChain)

1. Ask the user which **integration** & **action** they want (or infer from their ask).
2. Call the Pica MCP utilities (Section 1).
3. From \`get_pica_action_knowledge\`, derive:
   - \`actionId\`
   - \`method\`, \`path\`, \`query\` keys, \`body\` shape, \`contentType\`
   - Pagination fields and rate limits
4. Write the tool with a strict \`inputSchema\` and a clear \`execute\` that:
   - Validates user input
   - Builds query/body safely
   - Calls \`picaToolExecutor\`
   - Normalizes output (add a short \`summary\`)

### Complete Gmail Tool Example

Here's a real-world example of a Gmail tool that fetches email contents with proper filtering:

\`\`\`ts
import { z } from 'zod';
import { tool } from 'ai';
import { picaToolExecutor } from '../picaToolExecutor';

export const loadGmailEmails = tool({
  description: 'Load Gmail emails with specific filtering by label and number. Returns sender, receiver, time, subject, and body for each email.',
  inputSchema: z.object({
    label: z.string().optional().describe('Gmail label to filter by (e.g., "INBOX", "SENT", "UNREAD", or custom labels)'),
    numberOfEmails: z.number().min(1).max(50).default(10).describe('Number of emails to retrieve (1-50, default: 10)'),
    query: z.string().optional().describe('Additional Gmail search query (e.g., "from:john@example.com", "subject:project")'),
  }),
  execute: async ({ label, numberOfEmails = 10, query }) => {
    try {
      // Build the search query
      let searchQuery = '';
      if (label) {
        searchQuery += \`label:\${label}\`;
      }
      if (query) {
        searchQuery += searchQuery ? \` \${query}\` : query;
      }

      // Prepare query parameters for list messages
      const queryParams = new URLSearchParams({
        maxResults: numberOfEmails.toString(),
        ...(searchQuery && { q: searchQuery })
      });

      const connectionKey = process.env.GMAIL_CONNECTION_KEY;

      // First, get the list of message IDs using picaToolExecutor
      const listMessagesResult = await picaToolExecutor(
        '/users/me/messages',
        'conn_mod_def::F_JeIVCQAiA::oD2p47ZVSHu1tF_maldXVQ',
        connectionKey,
        { queryParams }
      );

      if (!listMessagesResult?.messages || listMessagesResult.messages.length === 0) {
        return {
          emails: [],
          totalFound: 0,
          message: 'No emails found matching the criteria',
          summary: 'No emails found matching the criteria'
        };
      }

      // Extract email details from each message
      const emails = [];

      for (const messageRef of listMessagesResult.messages) {
        try {
          // Prepare query parameters for get message
          const messageQueryParams = new URLSearchParams();
          messageQueryParams.set('format', 'full');
          messageQueryParams.append('metadataHeaders', 'From');
          messageQueryParams.append('metadataHeaders', 'To');
          messageQueryParams.append('metadataHeaders', 'Subject');
          messageQueryParams.append('metadataHeaders', 'Date');

          // Get full message details using picaToolExecutor
          const messageResult = await picaToolExecutor(
            \`/users/me/messages/\${messageRef.id}\`,
            'conn_mod_def::F_JeIErCKGA::Q2ivQ5-QSyGYiEIZT867Dw',
            connectionKey,
            { queryParams: messageQueryParams }
          );

          if (messageResult?.payload?.headers) {
            const headers = messageResult.payload.headers;

            // Extract header information
            const from = headers.find((h: any) => h.name.toLowerCase() === 'from')?.value || '';
            const to = headers.find((h: any) => h.name.toLowerCase() === 'to')?.value || '';
            const subject = headers.find((h: any) => h.name.toLowerCase() === 'subject')?.value || '';
            const date = headers.find((h: any) => h.name.toLowerCase() === 'date')?.value || '';

            // Extract body content
            let body = '';
            if (messageResult.payload.body?.data) {
              // Decode base64 body
              body = Buffer.from(messageResult.payload.body.data.replace(/-/g, '+').replace(/_/g, '/'), 'base64').toString('utf-8');
            } else if (messageResult.payload.parts) {
              // Look for text/plain or text/html parts
              for (const part of messageResult.payload.parts) {
                if (part.mimeType === 'text/plain' && part.body?.data) {
                  body = Buffer.from(part.body.data.replace(/-/g, '+').replace(/_/g, '/'), 'base64').toString('utf-8');
                  break;
                } else if (part.mimeType === 'text/html' && part.body?.data && !body) {
                  body = Buffer.from(part.body.data.replace(/-/g, '+').replace(/_/g, '/'), 'base64').toString('utf-8');
                }
              }
            }

            emails.push({
              sender: from,
              receiver: to,
              time: date,
              subject: subject,
              body: body.substring(0, 2000) + (body.length > 2000 ? '...' : ''), // Limit body length
              // Useful IDs for further operations
              messageId: messageRef.id,
              threadId: messageResult.threadId || messageRef.threadId || '',
              labelIds: messageResult.labelIds || [],
              historyId: messageResult.historyId || '',
              internalDate: messageResult.internalDate || '',
              snippet: messageResult.snippet || body.substring(0, 100) + (body.length > 100 ? '...' : '')
            });
          }
        } catch (messageError) {
          console.warn(\`Failed to get details for message \${messageRef.id}:\`, messageError);
          // Continue with other messages
        }
      }

      return {
        emails,
        totalFound: emails.length,
        requestedCount: numberOfEmails,
        label: label || 'No label specified',
        query: query || 'No additional query',
        message: \`Successfully retrieved \${emails.length} emails\`,
        summary: \`Retrieved \${emails.length} Gmail emails\${label ? \` from \${label}\` : ''}\${query ? \` matching "\${query}"\` : ''}\`
      };

    } catch (error) {
      console.error('Gmail load error:', error);
      return {
        emails: [],
        totalFound: 0,
        error: String(error),
        message: \`Failed to load Gmail emails: \${error}\`,
        summary: \`Failed to load Gmail emails: \${error}\`
      };
    }
  },
});
\`\`\`

### Key Implementation Patterns

1. **Multiple API calls**: List messages first, then fetch details for each
2. **Proper error handling**: Try-catch blocks and graceful degradation
3. **Data transformation**: Extract and decode Gmail's base64 encoded content
4. **Pagination support**: Use maxResults and search queries
5. **Rich return format**: Include both raw data and user-friendly summaries

---

## 4) MCP Server Implementation (Gmail Example)

For building complete MCP servers with Pica integration, follow this structure:

### Project Structure
\`\`\`
gmail-mcp-server/
β”œβ”€β”€ package.json
β”œβ”€β”€ tsconfig.json
β”œβ”€β”€ src/
β”‚   β”œβ”€β”€ index.ts          # Main MCP server
β”‚   β”œβ”€β”€ tools/
β”‚   β”‚   β”œβ”€β”€ gmail.ts      # Gmail tool implementations
β”‚   β”‚   └── index.ts      # Tool registry
β”‚   └── utils/
β”‚       └── pica.ts       # Pica executor
└── dist/                 # Compiled output
\`\`\`

### package.json
\`\`\`json
{
  "name": "gmail-mcp-server",
  "version": "1.0.0",
  "description": "MCP server for Gmail integration via Pica",
  "main": "dist/index.js",
  "scripts": {
    "build": "tsc",
    "dev": "tsx src/index.ts",
    "start": "node dist/index.js"
  },
  "dependencies": {
    "@modelcontextprotocol/sdk": "^1.0.0",
    "zod": "^3.23.8"
  },
  "devDependencies": {
    "@types/node": "^20.0.0",
    "tsx": "^4.0.0",
    "typescript": "^5.0.0"
  }
}
\`\`\`

### src/index.ts (Main MCP Server)
\`\`\`ts
#!/usr/bin/env node
import { Server } from '@modelcontextprotocol/sdk/server/index.js';
import { StdioServerTransport } from '@modelcontextprotocol/sdk/server/stdio.js';
import { CallToolRequestSchema, ListToolsRequestSchema } from '@modelcontextprotocol/sdk/types.js';
import { gmailTools } from './tools/gmail.js';

class GmailMCPServer {
  private server: Server;

  constructor() {
    this.server = new Server(
      {
        name: 'gmail-mcp-server',
        version: '1.0.0',
        description: 'MCP server for Gmail integration via Pica'
      },
      {
        capabilities: {
          tools: {},
        },
      }
    );

    this.setupHandlers();
  }

  private setupHandlers() {
    // List available tools
    this.server.setRequestHandler(ListToolsRequestSchema, async () => {
      return {
        tools: [
          {
            name: 'load_gmail_emails',
            description: 'Load Gmail emails with specific filtering by label and number. Returns sender, receiver, time, subject, and body for each email.',
            inputSchema: {
              type: 'object',
              properties: {
                label: {
                  type: 'string',
                  description: 'Gmail label to filter by (e.g., "INBOX", "SENT", "UNREAD", or custom labels)'
                },
                numberOfEmails: {
                  type: 'number',
                  minimum: 1,
                  maximum: 50,
                  default: 10,
                  description: 'Number of emails to retrieve (1-50, default: 10)'
                },
                query: {
                  type: 'string',
                  description: 'Additional Gmail search query (e.g., "from:john@example.com", "subject:project")'
                }
              },
              required: []
            }
          }
        ]
      };
    });

    // Execute tools
    this.server.setRequestHandler(CallToolRequestSchema, async (request) => {
      const { name, arguments: args } = request.params;

      try {
        switch (name) {
          case 'load_gmail_emails':
            return await gmailTools.loadEmails(args);
          default:
            throw new Error(\`Unknown tool: \${name}\`);
        }
      } catch (error) {
        return {
          content: [
            {
              type: 'text',
              text: \`Error executing \${name}: \${error instanceof Error ? error.message : String(error)}\`
            }
          ],
          isError: true
        };
      }
    });
  }

  async run() {
    const transport = new StdioServerTransport();
    await this.server.connect(transport);
    console.error('Gmail MCP Server running on stdio');
  }
}

const server = new GmailMCPServer();
server.run().catch(console.error);
\`\`\`

### src/tools/gmail.ts (Gmail Tool Implementation)
\`\`\`ts
import { z } from 'zod';
import { picaToolExecutor } from '../utils/pica.js';

const LoadGmailEmailsSchema = z.object({
  label: z.string().optional(),
  numberOfEmails: z.number().min(1).max(50).default(10),
  query: z.string().optional()
});

export const gmailTools = {
  async loadEmails(args: any) {
    const input = LoadGmailEmailsSchema.parse(args);

    if (!process.env.PICA_API_KEY) {
      throw new Error('PICA_API_KEY environment variable is required');
    }

    const connectionKey = process.env.GMAIL_CONNECTION_KEY;

    try {
      // Build the search query
      let searchQuery = '';
      if (input.label) {
        searchQuery += \`label:\${input.label}\`;
      }
      if (input.query) {
        searchQuery += searchQuery ? \` \${input.query}\` : input.query;
      }

      // First, get the list of message IDs
      const queryParams = new URLSearchParams({
        maxResults: input.numberOfEmails.toString(),
        ...(searchQuery && { q: searchQuery })
      });

      const listMessagesResult = await picaToolExecutor(
        '/users/me/messages',
        'conn_mod_def::F_JeIVCQAiA::oD2p47ZVSHu1tF_maldXVQ',
        connectionKey,
        { queryParams }
      );

      if (!listMessagesResult?.messages || listMessagesResult.messages.length === 0) {
        return {
          content: [
            {
              type: 'text',
              text: JSON.stringify({
                emails: [],
                totalFound: 0,
                message: 'No emails found matching the criteria'
              }, null, 2)
            }
          ]
        };
      }

      // Get details for each message
      const emails = [];
      for (const messageRef of listMessagesResult.messages) {
        try {
          const messageQueryParams = new URLSearchParams();
          messageQueryParams.set('format', 'full');
          messageQueryParams.append('metadataHeaders', 'From');
          messageQueryParams.append('metadataHeaders', 'To');
          messageQueryParams.append('metadataHeaders', 'Subject');
          messageQueryParams.append('metadataHeaders', 'Date');

          const messageResult = await picaToolExecutor(
            \`/users/me/messages/\${messageRef.id}\`,
            'conn_mod_def::F_JeIErCKGA::Q2ivQ5-QSyGYiEIZT867Dw',
            connectionKey,
            { queryParams: messageQueryParams }
          );

          if (messageResult?.payload?.headers) {
            const headers = messageResult.payload.headers;

            const from = headers.find((h: any) => h.name.toLowerCase() === 'from')?.value || '';
            const to = headers.find((h: any) => h.name.toLowerCase() === 'to')?.value || '';
            const subject = headers.find((h: any) => h.name.toLowerCase() === 'subject')?.value || '';
            const date = headers.find((h: any) => h.name.toLowerCase() === 'date')?.value || '';

            // Extract and decode body content
            let body = '';
            if (messageResult.payload.body?.data) {
              body = Buffer.from(messageResult.payload.body.data.replace(/-/g, '+').replace(/_/g, '/'), 'base64').toString('utf-8');
            } else if (messageResult.payload.parts) {
              for (const part of messageResult.payload.parts) {
                if (part.mimeType === 'text/plain' && part.body?.data) {
                  body = Buffer.from(part.body.data.replace(/-/g, '+').replace(/_/g, '/'), 'base64').toString('utf-8');
                  break;
                } else if (part.mimeType === 'text/html' && part.body?.data && !body) {
                  body = Buffer.from(part.body.data.replace(/-/g, '+').replace(/_/g, '/'), 'base64').toString('utf-8');
                }
              }
            }

            emails.push({
              sender: from,
              receiver: to,
              time: date,
              subject: subject,
              body: body.substring(0, 2000) + (body.length > 2000 ? '...' : ''),
              messageId: messageRef.id,
              threadId: messageResult.threadId || messageRef.threadId || '',
              snippet: messageResult.snippet || body.substring(0, 100) + (body.length > 100 ? '...' : '')
            });
          }
        } catch (messageError) {
          console.warn(\`Failed to get details for message \${messageRef.id}:\`, messageError);
        }
      }

      return {
        content: [
          {
            type: 'text',
            text: JSON.stringify({
              emails,
              totalFound: emails.length,
              requestedCount: input.numberOfEmails,
              label: input.label || 'No label specified',
              query: input.query || 'No additional query',
              summary: \`Retrieved \${emails.length} Gmail emails\${input.label ? \` from \${input.label}\` : ''}\${input.query ? \` matching "\${input.query}"\` : ''}\`
            }, null, 2)
          }
        ]
      };
    } catch (error) {
      throw new Error(\`Failed to load Gmail emails: \${error instanceof Error ? error.message : String(error)}\`);
    }
  }
};
\`\`\`

### src/utils/pica.ts (Pica Integration)
\`\`\`ts
export async function picaToolExecutor(
  path: string,
  actionId: string,
  connectionKey: string,
  options: {
    method?: string;
    queryParams?: URLSearchParams;
    body?: any;
    contentType?: string;
  } = {}
) {
  const { method = 'GET', queryParams, body, contentType } = options;

  const baseUrl = 'https://api.picaos.com/v1/passthrough';
  const url = queryParams
    ? \`\${baseUrl}\${path}?\${queryParams.toString()}\`
    : \`\${baseUrl}\${path}\`;

  const headers: Record<string, string> = {
    'content-type': contentType || 'application/json',
    'x-pica-secret': process.env.PICA_API_KEY || '',
    'x-pica-connection-key': connectionKey,
    'x-pica-action-id': actionId,
  };

  const fetchOptions: RequestInit = { method, headers };

  if (body && method !== 'GET') {
    fetchOptions.body = typeof body === 'string' ? body : JSON.stringify(body);
  }

  const response = await fetch(url, fetchOptions);
  if (!response.ok) {
    const text = await response.text().catch(() => '');
    throw new Error(\`Pica API call failed: \${response.status} \${response.statusText} :: \${text}\`);
  }
  return response.json().catch(() => ({}));
}
\`\`\`

### MCP Configuration
Add to your Claude Desktop config (\`~/Library/Application Support/Claude/claude_desktop_config.json\`):

\`\`\`json
{
  "mcpServers": {
    "gmail": {
      "command": "node",
      "args": ["/path/to/gmail-mcp-server/dist/index.js"],
      "env": {
        "PICA_API_KEY": "your-pica-api-key"
      }
    }
  }
}
\`\`\`

---

## 5) Pagination, Rate Limits, and Errors

- Use fields defined by \`get_pica_action_knowledge\` (e.g., \`nextPageToken\`, \`cursor\`, \`page\`, \`limit\`).
- Loop until requested \`limit\` is reached or no \`next\` token remains.
- On \`429\`, backoff before retrying.
- Always return meaningful error messages and structured responses.

---

## 6) Security & Secrets

- Require \`PICA_API_KEY\` at runtime.
- Treat \`{PLATFORM}_CONNECTION_KEY\` as sensitive.
- No secrets in logs or errors.
- Validate all inputs with Zod schemas.

---

## 7) Project Detection (No Overwrite)

- If project markers exist (\`package.json\`, \`src/\`, \`.git\`, etc.), **do not** scaffold new project.
- Only add minimal new files for new tools or MCP endpoints.

---

## 8) Developer Experience

- Provide complete installation instructions:
  - \`npm install @modelcontextprotocol/sdk zod\`
  - \`npm install -D @types/node tsx typescript\`
- Build and run scripts:
  - \`"build": "tsc"\`
  - \`"dev": "tsx src/index.ts"\`
  - \`"start": "node dist/index.js"\`

---

## 9) Done Criteria

- Used Pica MCP discovery before coding
- MCP server/tool compiles and runs with \`PICA_API_KEY\` + \`{PLATFORM}_CONNECTION_KEY\`
- Tools are properly registered and callable
- Input/output validation with Zod schemas
- Error handling with meaningful responses
- Follows MCP protocol correctly
- Pagination & rate-limits handled if needed
- Minimal changes to existing project structure

---
You can verify setup by asking β€œWhat connections do I have in Pica?” - it should show your connections added above.

Prompt the LLM to build your tool

Copy this prompt to build the MCP Lead Qualification Agent:
MCP Agent Prompt
# MCP Agent Prompt (Automated Lead Qualification Agent)

Create a comprehensive MCP agent with multiple tools for automated lead qualification using BuildKit and Pica integrations. The agent should:

TOOLS NEEDED:
1. fetchLeadEmails - Fetch Gmail emails from last 24 hours with "Leads" label
2. extractLeadInformation - Extract structured lead data (name, email, company, phone, budget, timeline) from email content
3. qualifyLeadWithAI - Use AI to score leads based on qualification criteria (budget, timeline, intent, company size)
4. checkExistingContact - Search HubSpot for existing contacts to prevent duplicates
5. createHubSpotContact - Create new contact in HubSpot with extracted lead information
6. sendSlackNotification - Send formatted notification to sales team with lead details and HubSpot link

QUALIFICATION SCORING CRITERIA:
- High-Value Indicators (+2-3 points each):
  * Mentions specific budget over $5,000
  * Indicates urgent timeline (immediate, ASAP, this week/month)
  * References specific products/services by name
  * Includes company name and professional email domain
  * Mentions existing pain points or current solutions

- Medium-Value Indicators (+1-2 points each):
  * General budget discussion without specific amounts
  * Mentions timeline within 3-6 months
  * Professional language and detailed inquiry
  * Includes contact phone number
  * References competitors or market research

- Low-Value Indicators (0-1 points each):
  * Generic inquiry templates
  * No timeline mentioned
  * Personal email addresses only
  * Vague or very brief messages
  * No budget or price sensitivity mentioned

HUBSPOT CONTACT STRUCTURE:
- First Name
- Last Name
- Email (Primary)
- Company Name
- Phone Number
- Lead Source: "Email Inquiry"
- Lead Status: "New"
- Lead Score: (AI qualification score 1-10)
- Notes: (AI qualification reasoning)

SLACK NOTIFICATION FORMAT:
🎯 **New Qualified Lead** (Score: X/10)

**Contact:** [Name] at [Company]
**Email:** [email] | **Phone:** [phone]
**Budget:** [extracted budget info]
**Timeline:** [extracted timeline]

**Qualification Reasoning:**
[AI explanation of why this lead scored X/10]

**Next Actions:**
- [ ] Review HubSpot contact: [HubSpot URL]
- [ ] Send personalized follow-up within 2 hours
- [ ] Schedule discovery call if appropriate

**Original Message:**
[First 200 characters of email...]

WORKFLOW:
1. Fetch emails with "Leads" label from last 24 hours
2. For each email:
   - Extract lead information (name, email, company, phone, budget indicators, timeline)
   - Score lead using AI qualification criteria (1-10 scale)
   - If score >= 7/10:
     * Check HubSpot for existing contact by email
     * If new contact: Create HubSpot contact with extracted data
     * If existing: Update with new lead score and notes
     * Send Slack notification to #sales-leads channel
   - If score < 7/10: Log as unqualified lead for review

ERROR HANDLING:
- Skip emails that can't be parsed or are clearly spam
- Handle duplicate contacts gracefully
- Retry failed API calls up to 3 times
- Log all actions for audit trail

CUSTOMIZATION OPTIONS:
- Adjustable qualification score threshold (default: 7/10)
- Configurable Slack channel (#sales-leads)
- Custom HubSpot properties based on business needs
- Flexible email label filtering ("Leads", "Inquiries", etc.)

The agent should process all qualifying leads efficiently while maintaining data quality and providing actionable insights to the sales team.

Benefits

Instant Lead Response

Process leads within minutesAutomatically qualify and route hot leads to your sales team before competitors respond

Consistent Qualification

AI-powered scoring systemEliminate human bias with standardized qualification criteria applied to every lead

Zero Lead Loss

Complete lead captureNever miss a qualified lead with automated processing and CRM integration

Sales Team Efficiency

Focus on high-value prospectsPre-qualified leads with context help sales teams prioritize their outreach efforts

Advanced Customization

Ready to enhance your lead qualification? Consider these additions:

Lead Scoring Webhooks

Set up HubSpot workflows to trigger additional actions based on lead scores

Calendar Integration

Automatically book discovery calls for high-scoring leads using Calendly

Email Sequences

Trigger personalized email sequences in HubSpot based on lead qualification

CRM Enrichment

Enhance contact records with additional data from LinkedIn or company databases
πŸš€ Ready for more? Browse our catalog of 25,000+ actions across 150+ integrations to expand your lead qualification pipeline! Explore All Integrations β†’